Testing of Coaching Stock

Need for Testing New Stock

- Safe new design
- Get natural frequency in various modes
- Ensure level of comfort
- Statutory requirements as per Policy Circular No 6 of Rly. Bd.

Modes of Oscillation

Policy Circular No 6

- No.92/CEDO/SR/4/0 dated 23/12/1999 issued by Member(Engg), Rly.Bd.
- Contains rules for certification of maximum permissible speeds for rolling stock
- Rly.Bd. is safety controlling authority for Indian Railways under Indian Railways Act
- Responsibility delegated to RDSO
 - Determine & recommend max permissible speed for new design rolling stock

Policy Circular No 6(contd.)

- Definition of new rolling stock
 - Different principal dimensions
 - Different bogie design
 - New braking system
 - Change in axle load, track loading density, unsprung mass
 - Minor changes in design,internal layout(with sanction of CRS) only if leading to significant change in
 - C.G., Weight distribution, ride behaviour

Types of trials

- Detailed oscillation trials
- EBD(speed >110 for passenger & 75 for goods) & Coupler force trials of trains
- Confirmatory oscillograph car run on tracks above 110Kmph
- Route Proving run between 105-110 Kmph by zonal Rly using portable accelerometers
 - Accel <.3 g or <.25 peaks/km for .3g < accel <.35g

Effect of Vibration on Human Body

Effect of Vibration on Human Body

- Impulse/Shock in collisions
- Short term exposure
 - Unpleasant Sensation
 - Can withstand higher amplitudes
- Long duration exposure
 - Leads to fatigue after some time
- Function of Frequency, amplitude and posture

Effect of short duration vibrations

Transmission ratio of human body parts

Transmission ratio of human body parts

Effect of Prolonged Exposure to Vibrations on Humans

Sperling's Ride Index

- Human sensation of comfort proportional to
 - Displacement (sinusoidal)
 - Acceleration
 - Rate of change of acceleration
- RI=.896(g(f)*b 3 /f)^{0.1}, b= acceleration amp
- Ride comfort correction factor g(f) = kf²
 - k=.325 for vertical RI (0.5-5.4Hz)
 - k = .8 for lateral RI (0.5-5.4 Hz)
 - k=1 for goods stock

Vertical Weight Vs Frequency

lateral Weight vs Frequency

Track and Related Issues

Indian Railway Track

- Classified into two categories
- Main Line (speed <110 km/h)
- High Speed
 - For speed upto 150 Kmph
 - Based on Vol-I of Civil and Mechanical Engg Report No-I (C&M-I) dated May 1969 for "Increase of Speed on DLI-HWH Route Feasibility Study"

Track Recording Cars

- Recording speed 50 -100kmph
- Recording every .4m
- Self adjusting offset after some time
- Recording periodicity
 - Depends on track category

Derailment

- Wheel climbing rail
 - Tight gauge
 - Due to excessive angle of attack
 - Sharp flange/Sharp curve -too much versine
 - Excessive lateral force- Nadal's formula
 - Hy/Q =(tanA-mu)/(1+mu tanA)=.997, where, A = flange angle wrt to horizontal; mu=.27
 - Friction assists **only** if angle of attack causes rail wheel rubbing to be advanced

Derailment

- Wheel offloaded due to
 - Excessive spring deflection
 - Due to inadequate ballast
 - Unevenness of track
 - Poor quality ballast -caked up
 - Resonance
 - Poor damping
 - On multi-span bridges (more likely on steel girder type)

Resonance

Derailment

- Rail fractures due to
 - Inadequate stress relieving
 - Improper UFD
 - Inadequate ballast
 - Wheel flats?
- Shifting of sleepers
 - Prud Homme's Limit (wooden sleeper)
 - $Hy_{2m} < .85(1+P/3)$,
 - Wrong shape of ballast packing

Signal Processing

Fourier Transformation

- Transformation of any time domain function into frequency domain
 - Sum of sin waves of various frequencies & phases
- Fast Fourier Transformation
 - Discrete data
 - Uses computationally efficient algorithm
 - Fundamental frequency = 1/observation time
 - Usually sum of harmonics of sin wave of fundamental frequency
 - Highest frequency = ½ sampling rate (Nyquist)

Important DAQ Parameters

- Sampling rate
 - Min Nyquist limit
 - Usually 10 time highest signal frequency
 - Aliasing noise
 - Use of anti-aliasing filter
- Bit /sample
 - Higher value => lower digitizing noise
- Buffer size

Sampling of Signal of 0.1 Hz at 0 .5 sec sampling interval

Filters

- Anti-aliasing to filter out frequencies above sampling rate
- Before ADC conversion
- Higher order filters cause phase shift

Ideal Low Pass Filter

Desired Low Pass Filter

Low Pass Filters

Phase shift vs Frequency

Data Acquisition System

Data Acquisition Card

Oscillation trials of Rolling Stock

3rd Report of Standing Criteria Committee dated January 2000

- To evolve criteria for assessment of stability of rolling stock on IR,
- Composition
 - ED s RDSO
- Formulates oscillation trial procedure and Evaluation criteria

Test Track

- Straight 1 Km X 2
 - Station yard
 - 700-800 m Curve of about 2 degree
- Rundown track worse than 90% of IR track
- On main line track
 - Include high speed (C&M I vol I) for speed >110kmph
- Long confirmatory run for 10-50kms with resonance check on hard spots like L-Xing, Culverts, Bridges

Procedure

- Test Speed (Loaded & Empty)
 - Start with low speed (60kmph/80kmph)
 - Increase speed in increments of 5/10Kmph
 - Stop if any limit is exceeded
 - Max speed 10% higher than the proposed speed
- Test vehicle to be last vehicle (except loco)
- Free end bogie (leading bogie for loco) usually instrumented
- Data acquisition system usually in oscillograph car

RIDE INDEX CALCULATION

Calculation for samples from 18553 to 21549

Channel 3

DC Offset

Conversion Factor

Scan 100 Type of Vehicle

Loco/Carriage Lateral

Mean Acceleration

0.022

Standard Deviation

0.017

RMS Acceleration

0.028

Percentile Max. 99.85/0.15

0.093

Max. Acceleration

0.102

Average Ride Index

2.729

 UIC Percentile Values

 99.85%
 50.00%
 0.15%

0.073

-0.005

-0.093

Mode

BACK

Criteria for Carriage

- Ride index <3.5,
 - preferred 3.25
 - upto 4 for EMU/DMU
- <.3g accelerations in vertical & lateral directions
- Isolated peak upto .35g if no resonance

Criteria for wagons

- Hy_{2m}<.85(1+P/3),P= axle load (Prud Homme's limit)
- Hy/Q (for >1/20 sec) <1
- In case Hy cannot be measured,
 - Ride index < 4.5, preferred 4.25
- General stable running characteristics based on
 - Accelerations
 - Spring deflections

Other Tests Related to Coaches

Squeeze test

- Check buffing /pay loads
- Measure deflections, stresses and permanent sets

Crash worthy tests

- Withstand impact at 60 km/h
- In passenger area
- Actual crashes carried out

Example of Squeeze Test

- BG BEML shell (model 816)
- Requirements
 - Max stress 90% of lower YP
 - No permanent set at 102 mT load
 - Max shell deflection (lateral & vertical)
 - . 10 mm at centre
 - 6 mm at ends
 - No weld failure

Test Fixtures

Loading Devices

Deflection Measurement

Stress Measurement

Crash Test video

Thank You!!!